
CPS122 Lecture: Detailed Design and Implementation

Last revised February 21, 2022
Objectives:

1. To introduce the use of a complete UML class box to document the name,
attributes, and methods of a class

2. To show how information flows from an interaction diagram to a class design
3. To review javadoc class documentation

 Materials :

1. Projectables
2. Javadoc documentation for UMLImplementation labs classes
3. Javadoc documentation for java.io.File and java.awt.BorderLayout (online)
4. QC 10 a-f answers

I. Introduction

A. Preliminary note: we will weave the quick-check questions on chapter
10 into presentation instead of going through them all at the outset.

B. So far in the course we have been focussing our attention on two tasks
that are part of the process of developing software: analysis and
(overall) design. To do this, we have looked at several tools.

1. Class diagrams - a tool to show the various classes needed for a
system, and to identify relationships between these classes - a tool
to help us document the static structure of a system.

2. CRC cards - a tool to help us identify the responsibilities of each class.

3. Interaction diagrams - a tool to help us document what we
discovered by using CRC cards, by showing how each use case is
realized by the interaction of cooperating objects - one of several
tools to help us capture the dynamic behavior of a system.

1

4. State Diagrams - a tool to help capture the dynamic behavior of
individual objects (where appropriate).

C. We have noted that, in developing CRC cards and interaction
diagrams, we often discover the need for additional classes beyond
those we initially discovered when we were analyzing the domain.

1. These include classes for boundary objects and controller objects.
In fact, a use case will typically be started by some boundary
object, and may make use of additional boundary objects to acquire
the information it needs. It will have generally have some
controller object be responsible for carrying it out.

2. One writer has estimated that the total number of classes in an
application will typically be about 5 times the number initially
discovered during analysis.

D. We now turn to implementation phase.

1. Here, we will focus on building the individual classes, using the CRC
Cards and class diagram to identify the classes that need to be built, and
the interaction and state diagrams (and CRC cards) to help us build
each class.

2. There are actually three kinds of activity that are part of this:

a) Detailed design of the individual classes

(1)In overall design, we are concerned with identifying the
classes and discovering their relationships. One of the end
results of overall design is a class diagram, showing the
various classes and how they relate to one another.

2

(2)In detailed design, we focus on each individual class.

(a)Quick check question (a)

(b)In detailed design, we develop:

i) A class’s interface - what “face” it presents to the rest
of the system

ii) Its implementation - how we will actually realize the
behavior prescribed by the interface.

(c)To document this, we may draw a more detailed UML
representation for the class: a rectangle with three
compartments:

i) Class name

ii) Attributes (instance variables)

iii)Operations (methods)

(d)A note on notational conventions - UML uses a somewhat
different notation than Java does for specifying attributes and
operations

i) Quick check question (e) - format for attribute
(instance variable) signature

Visibility Name : Type

where visibility is + for public, # for protected, and -
for private.

ii) Quick check question (f) - format for operation
(method) signature

3

Visibility Name(Parameter : Type ...) : Return Type

where again visibility is + for public, # for protected,
and - for private.

b) Writing the code for the various methods of the class

c) Unit testing each method to be sure it does what it is supposed to do.

E. For our examples we will use a class from the labs you have been doing
in the last few weeks - a system that manages student registrations in
courses - the class EnrolledIn. For the labs, you were given the code
for this class. We will now talk about how the design was developed.

1. Project overall class structure

4

5

Course

- id: String
- limit: int
(two instance variables omitted)

+ Course(String, int)
+ getId(): String
+ hasRoom(): boolean
+ addEnrolledIn(String, EnrolledIn): void
+ getEnrolledIn(String): EnrolledIn
+ removeEnrolledIn(String): void
+ addWaiting(Student): void
+ removeWaiting(Student): void
+ areAnyWaiting(): boolean
+ removeFirstWaiting(): Student
+ printReport(): void

Student

- name: String
(one instance variable omitted)

+ Student(String)
+ getName(): String
+ addEnrolledIn(String, EnrolledIn): void
+ getEnrolledIn(String): EnrolledIn
+ removeEnrolledIn(String): void
+ printReport(): void

EnrolledIn

- Course course
- Student student
- String grade

+ EnrolledIn(Course, Student)
+ getCourse(): Course
+ getStudent(): Student
+ setGrade(String): void
+ getGrade(): String

0..1

RegistrationModel

(three instance variables omitted)

+ RegistrationModel()
+ addCourse(String, int): void
+ addStudent(String): void
+ addLegalGrade(String): void
+ getCourse(String): Course
+ getStudent(String): Student
+ isLegalGrade(String): boolean
+ courseIterator(): Iterator<Course>
+ studentIterator(): Iterator<Student>

id name

0..1

* *

◀ OnWaitingList

**

1 1

idname

{ ordered }

0 .. 10 .. 1

2. Note that the class EnrolledIn is an association class because it has
to hold a grade which is specific to the enrollment of a specific student
in a specific course.

3. The responsibilities of this class might be given by the following CRC
card.

PROJECT CRC Card for EnrolledIn  
 
Class EnrolledIn

Responsibilities Collaborators

Maintain record of a student's registration Student
in a course Course

Record the student's grade in the course

4. It actually participates in several use cases that give rise to several
sequence diagrams:

a) Grade Student

b) Course Report

c) Student Report

PROJECT sequence diagrams for Grade Student as an example.

6

7

II.Deciding on the Instance Variables of a Class

A. In detailed design we represent each class as a three-compartment box
in which the middle compartment represents the attributes of a class -
its instance variables. As an example, here is the detailed design for
class EnrolledIn. (PROJECT)

B. How do we decide what instance variables a class needs?

1. Basically, the instance variables hold information about who (what other
objects) objects of the class know and what objects of the class know.

EnrolledIn

-course: Course
-student: Student
-grade: String

+EnrolledIn(Course, Student)
+getCourse(): Course
+getStudent(): Student
+setGrade(String): void
+getGrade(): String

8

2. The "who" question can be answered by looking at the associations
between this class and other classes in the class diagram.

Example: Note that EnrolledIn is associated with Course and
Student in class diagram and so has instance variables for Course
and Student

3. The "what" question can be answered by looking at the CRC cards
- what does an object need to know in order to be able to fulfill its
responsibilities?

Example: In the CRC card for EnrolledIn it is responsible to
maintain a record of a particular student's enrollment in a
particular course, it needs student and course instance variables.

Since it must keep track of a student's grade, it needs a grade
instance variable

Note instance variable grade in detailed design

C. We covered material relevant to three of the quick-check questions for
this chapter in conjunction with our discussion of implementing
associations (not directly tied to a book chapter), so these questions are
a sort of review, but let's do them now

Quick-check questions (b), (c), (d)

III.Identifying the Methods of a Class

A. A key question in designing a class is “what methods does this class
need”? Here, our interaction diagrams are our primary resource.
Every message that an object of our class is shown as receiving in an
interaction diagram must be realized by a corresponding method in our
class’s interface.

1. As an example of this, consider again the interaction diagram for
Grade Student in which EnrolledIn is involved.

9

PROJECT each and then show method setGrade(() in detailed design

Each of the methods in the design actually shows up a message sent to
an EnrolledIn object in some interaction. (Must look at every
interaction where EnrolledIn appears to find them all. (The others
would appear in the report sequences.)

a)No other messages are sent to an EnrolledIn object in any
interaction, and no other ordinary operations (i.e. other than the
constructor) show up in the detailed design as a result.

2. Notice that we are only interested here in the messages a given
class of object receives; not in the messages it sends (which are part
of its implementation).

IV.More About Designing the Interface of a class

A. The interface of a class is the “face” that it presents to other classes -
i.e. its public features.

1. In a UML class diagram, public features are denoted by a “+”
symbol. In Java, of course, these features will actually be declared
as public in the code.

2. The interface of a class needs to be designed carefully. Other
classes will depend only on the public interface of a given class.
We are free to change the implementation without forcing other
classes to change; but if we change the interface, then any class that
depends on it may also have to change. Thus, we want our
interface design to be stable and complete.

B. An important starting point for designing a class is to write out a brief
statement of what its basic role is - what does it represent and/or do in
the overall context of the system.

10

1. If the class is properly cohesive, this will be a single statement.

2. If we cannot come up with such a statement, it may be that we
don’t have a properly cohesive class!

3. We have been documenting our classes using javadoc. One
component of the javadoc documentation for the class is a class
comment - which spells out the purpose of the class. (We will
review other javadoc features at the appropriate point later on.)

EXAMPLE: Show online documentation for UML Implementation
Labs classes

C. Languages like Java allow the interface of a class to include both
attributes (fields) and behaviors (methods). It is almost always the case
that fields should be private or protected (some writers would argue
always, not just almost always), so that the interface consists only of:

1. Methods

2. Constants (public static final ...)

3. Note that, while good design dictates that methods and constants
may be part of the public interface of a given class, good design
does not require that all methods and constants be part of the public
interface. If we have some methods and/or constants that are
needed for the implementation of the class, but are not used by the
“outside world”, they belong to the private implementation .

4. In general, we should use javadoc to document each feature that is
part of the public interface of a class - including any protected
features that, while not publicly accessible, are yet needed by
subclasses. Using javadoc for private features may be helpful to a
maintainer; but the javadoc program, by default, does not include
private features in the documentation it generates.

11

D. An important principle of good design is that our methods should be
cohesive - i.e. each method should perform a single, well-defined task.

a) A way to check for cohesion is to see if it is possible to write a
simple statement that describes what the method does.

b) In fact, this statement will later become part of the
documentation for the method - so writing it now will save time
later.

EXAMPLE: Look at documentation for class java.io.File.
Note descriptions of each method.

c) The method name should clearly reflect the description of what
the method does. Often, the name will be a single verb, or a
verb and an object. The name may be an imperative verb - if
the basic task of the method is to do something; or it may be an
interrogative verb - if the basic task of the method is to answer a
question.

EXAMPLE: Note examples of each in methods of File.

d) Something to watch out for - both in method descriptions and in
method names - is the need to use conjunctions like “and”. This
is often a symptom of a method that is not cohesive.

2. Another important consideration in designing a method is the
parameters needed by the method.

a) Parameters are typically used to pass information into the method.
Thus, in designing a parameter list, a key question to ask is “what does
the sender of the message know that this method needs to know?”
Each such piece of information will need to be a parameter.

12

b) There is a principle of narrow interfaces which suggests that we
should try to find the minimal set of parameters necessary to
allow the method to do its job.

3. A third important consideration is the return value of the method.

4. Just as we use a javadoc class comment to document each class, we use
a javadoc method comment to document each method. As we have
discussed in the past, then, the documentation for a method includes:

a) A statement of the purpose of the method. (Which should,
again, be a single statement if the method is cohesive).

b) A description of the parameters of the method.

c) A description of the return value - if any.

d) An IDE like Netbeans can help to generate these

DEMO - Create an application and use main class created

(1)Type method prologue
(2)Type /** on line before method
(3)Press enter key (on keypad - not return; or return on a laptop)
(4)But note that - but note that it is vital to complete the comment

by explaining the purpose of the method, the purpose of each
parameter., and the meaning of any return value.

E. Sometimes, another issue to consider in determining the methods of an
object is the “common object interface” - methods declared in class Object
(which is the ultimate base class of all classes) that can be overridden where
appropriate. Most of the time, you will not need to worry about any of these.
The ones you are most likely to need to override are:

13

1. The boolean equals(Object) method used for comparisons for
equality of value.

2. The String toString() method used to create a printable
representation of the object - sometimes useful when debugging.

EXAMPLE: Show overrides in class SimpleDate for project in
excepts from SimpleDate.java

 /** Convert this object to a nicely printable
 * string
 *
 * @return formatted string representing  
 * this object in MM/DD/YY format
 */
 public String toString()
 {
 return DateFormat.getDateInstance

 (DateFormat.SHORT).format
 (value.getTime());
 }

...

 /** Test to see if the date represented by  
 * this object is the same as that
 * represented by some other object
 *
 * @param other the date to be compared to
 * @return true if other object is a
 * SimpleDate and date represented
 * by this object is the same as
 * that represented by other object
 *
 */
 public boolean equals(Object other)
 {
 return (other instanceof SimpleDate) &&
 this.value.equals(

((SimpleDate) other).value);
 }

...
}

3.

14

F. While the bulk of a class’s interface will typically be methods, it is
also sometimes useful to define symbolic constants that can serve as
parameters to these methods

1. EXAMPLE: java.awt.BorderLayout

2. In Java, constants are declared as final static. A convention in Java
is to give constants names consisting of all upper-case letters,
separated by underscores if need be.

Public constants should also be documented via javadoc

SHOW Documentation for constants of class java.awt.BorderLayout

PROJECT: source code showing javadoc comments.

 /**
 * The north layout constraint (top of container).
 */
 public static final String NORTH = "North";

 /**
 * The south layout constraint (bottom of container).
 */
 public static final String SOUTH = "South";

 /**
 * The east layout constraint (right side of container).
 */
 public static final String EAST = "East";

 /**
 * The west layout constraint (left side of container).
 */
 public static final String WEST = "West";

 /**
 * The center layout constraint (middle of container).
 */
 public static final String CENTER = "Center";

15

V. Some Final Thoughts on Detailed Design/Implementation

A. In the case of class hierarchies, we need to think about what level in
the hierarchy each attribute belongs on.

Recall the "Pet Kennel" lab

B. Sometimes, in implementing methods, we discover that it would be
useful to introduce one or more private methods that facilitate the
tasks of the public methods by performing well-defined subtasks.

C. A final consideration is the physical arrangement of the source code
for a class. A reasonable way to order the various methods and
variables of a class is as follows:

1. Immediately precede the class declaration with a class comment
that states the purpose of the class.

2. Put public members (which are part of the interface) first - then
private members. That way a reader of the class who is interested
in its interface can stop reading when he/she gets to the
implementation details in the private part.

3. Organize the public interface members in the following order:

a) Class constants (if any)

b) Constructor(s)

c) Mutators

d) Accessors

4. In the private section, put method first, then variables.

But: sometimes it is desirable to put the instance variables at the
very start of the class

5. If the class contains any test driver code, put this last.

16

